Part Number Hot Search : 
ADT746 MN4006B CA5800CS C3803 TMP4799C 621K4 FSUSB42 5924B
Product Description
Full Text Search
 

To Download AP4501GSD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AP4501GSD
Pb Free Plating Product
Advanced Power Electronics Corp.
Simple Drive Requirement Low On-resistance Fast Switching Characteristic
G2 D1 D1 D2 D2
N AND P-CHANNEL ENHANCEMENT MODE POWER MOSFET
N-CH BVDSS RDS(ON) ID P-CH BVDSS RDS(ON) ID
D1
30V 27m 7A -30V 49m -5A
D2
PDIP-8
S1
S2 G1
Description
The Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and costeffectiveness.
G1
G2 S1 S2
Absolute Maximum Ratings
Symbol VDS VGS ID@TA=25 ID@TA=70 IDM PD@TA=25 TSTG TJ Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Continuous Drain Current Pulsed Drain Current
1 3 3
Rating N-channel 30 20 7 5.8 40 2 0.016 -55 to 150 -55 to 150 P-channel -30 20 -5 -4.2 -30
Units V V A A A W W/
Total Power Dissipation Linear Derating Factor Storage Temperature Range Operating Junction Temperature Range
Thermal Data
Symbol Rthj-a Parameter Thermal Resistance Junction-ambient
3
Value Max. 62.5
Unit /W
Data and specifications subject to change without notice
200504042
AP4501GSD
N-CH Electrical Characteristics@Tj=25oC(unless otherwise specified)
Symbol BVDSS
BVDSS/Tj
Parameter Drain-Source Breakdown Voltage
2
Test Conditions VGS=0V, ID=250uA
Min. Typ. Max. Units 30 1 0.03 12 9 2 5 6 5 19 4 645 150 95 27 50 3 1 25 13 800 V V/ m m V S uA uA nC nC nC ns ns ns ns pF pF pF
Breakdown Voltage Temperature Coefficient Reference to 25, ID=1mA
RDS(ON)
Static Drain-Source On-Resistance
VGS=10V, ID=7A VGS=4.5V, ID=5A
VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
Gate Threshold Voltage Forward Transconductance
Drain-Source Leakage Current (Tj=25oC) Drain-Source Leakage Current (Tj=70 C)
o
VDS=VGS, ID=250uA VDS=10V, ID=7A VDS=30V, VGS=0V VDS=24V, VGS=0V VGS=20V ID=7A VDS=24V VGS=4.5V VDS=15V ID=1A RG=3.3,VGS=10V RD=15 VGS=0V VDS=25V f=1.0MHz
Gate-Source Leakage Total Gate Charge
2
100 nA
Gate-Source Charge Gate-Drain ("Miller") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
2
Source-Drain Diode
Symbol VSD trr Qrr Parameter Forward On Voltage
2 2
Test Conditions IS=1.7A, VGS=0V IS=7A, VGS=0V, dI/dt=100A/s
Min. Typ. Max. Units 16 10 1.2 V ns nC
Reverse Recovery Time
Reverse Recovery Charge
AP4501GSD
P-CH Electrical Characteristics@Tj=25 C(unless otherwise specified)
Symbol BVDSS
BVDSS/Tj
o
Parameter Drain-Source Breakdown Voltage Static Drain-Source On-Resistance Gate Threshold Voltage Forward Transconductance
Drain-Source Leakage Current ( T=25oC) j Drain-Source Leakage Current ( T=70 C) j
o
Test Conditions VGS=0V, ID=-250uA
2
Min. Typ. Max. Units -30 -1 -0.03 8 9 2 5 10 7 27 16 180 130 49 75 -3 -1 -25 15 V V/ m m V S uA uA nC nC nC ns ns ns ns pF pF pF
Breakdown Voltage Temperature Coefficient Reference to 25, ID=-1mA
RDS(ON) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
VGS=-10V, ID=-5A VGS=-4.5V, ID=-3A VDS=VGS, ID=-250uA VDS=-10V, ID=-5.3A VDS=-30V, VGS=0V VDS=-24V, VGS=0V VGS= 20V ID=-5A VDS=-24V VGS=-4.5V VDS=-15V ID=-1A RG=6,VGS=-10V RD=15 VGS=0V VDS=-25V f=1.0MHz
Gate-Source Leakage Total Gate Charge
2
100 nA
Gate-Source Charge Gate-Drain ("Miller") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
2
460 730
Source-Drain Diode
Symbol VSD trr Qrr Parameter Forward On Voltage
2 2
Test Conditions IS=-1.7A, VGS=0V IS=-5A, VGS=0V, dI/dt=100A/s
Min. Typ. Max. Units 21 18 -1.2 V ns nC
Reverse Recovery Time
Reverse Recovery Charge
Notes:
1.Pulse width limited by Max. junction temperature. 2.Pulse width <300us , duty cycle <2%. 3.Mounted on 1 in2 copper pad of FR4 board ; 90/W when mounted on Min. copper pad.
AP4501GSD
N-Channel
40
36
T A =25 o C
30
ID , Drain Current (A)
ID , Drain Current (A)
10V 8.0V 6.0V 5.0V
T A =150 o C
10V 8.0V 6.0V 5.0V
24
20
12
V G =4. 0 V
10
V G =4.0V
0 0 1 2 3 4
0
0
2
3
5
V DS , Drain-to-Source Voltage (V)
V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
2
I D =7A T A =25 Normalized RDS(ON)
70
1.4
I D =7A V G = 10V
RDS(ON) (m )
40
0.8
10
2 5 8 11
0.2 -50 0 50 100 150
V GS , Gate-to-Source Voltage (V)
T j , Junction Temperature ( o C)
Fig 3. On-Resistance v.s. Gate Voltage
Fig 4. Normalized On-Resistance v.s. Junction Temperature
3
10
2.5
1
2
IS(A)
T J =150 o C
T J =25 o C
VGS(th) (V)
1.2
1.5
0.1
1
0.5
0.01 0 0.4 0.8
0 -50 0 50 100 150
V SD , Source-to-Drain Voltage (V)
T j , Junction Temperature (
o
C)
Fig 5. Forward Characteristic of
Reverse Diode
Fig 6. Gate Threshold Voltage v.s. Junction Temperature
AP4501GSD
N-Channel
f=1.0MHz
12 1000
I D =7.0A VGS , Gate to Source Voltage (V)
9
C iss
V DS =16V V DS =20V V DS =24V C (pF)
100
6
C oss C rss
3
0 0 4 8 12 16
10 1 7 13 19 25 31
Q G , Total Gate Charge (nC)
V DS , Drain-to-Source Voltage (V)
Fig 7. Gate Charge Characteristics
Fig 8. Typical Capacitance Characteristics
100
1
100us
10
Normalized Thermal Response (Rthja)
Duty Factor = 0.5
0.2
1ms ID (A)
1
0.1
0.1
0.05
10ms 100ms 1s 10s DC
0.02
0.01
0.01
Single Pulse
PDM
t T
0.1
T A =25 o C Single Pulse
0.01 0.1 1 10
Duty Factor = t/T Peak Tj = PDM x Rthja + Ta Rthja =90o C/W
0.001 100 0.0001 0.001 0.01 0.1 1 10 100 1000
V DS , Drain-to-Source Voltage (V)
t , Pulse Width (s)
Fig 9. Maximum Safe Operating Area
Fig 10. Effective Transient Thermal Impedance
VDS 90%
VG QG 4.5V QGS QGD
10% VGS td(on) tr td(off)tf Charge Q
Fig 11. Switching Time Waveform
Fig 12. Gate Charge Waveform
AP4501GSD
P-Channel
40 36
T A =25 o C
30
-10V -8.0V -6.0V -ID , Drain Current (A)
24
T A =150 C
o
-10V -8.0V -6.0V
-ID , Drain Current (A)
-5.0V
20
-5.0V
12
10
V G = - 4. 0 V
V G = - 4. 0 V
0 0 1 2 3 4
0 0 1 2 3 4 5
-V DS , Drain-to-Source Voltage (V)
-V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
120
1.8
I D =-5.0A T A =25 Normalized R DS(ON)
1.6
I D =-5.0A V G = -10V
90
1.4
RDS(ON) (m )
1.2
60
1
0.8
30
3 5 7 9 11
0.6 -50 0 50 100 150
-V GS , Gate-to-Source Voltage (V)
T j , Junction Temperature ( C)
o
Fig 3. On-Resistance v.s. Gate Voltage
Fig 4. Normalized On-Resistance v.s. Junction Temperature
3
10
2.5
1
2
-IS(A)
T j =150 o C
T j =25 o C
-VGS(th) (V)
1.3
1.5
0.1
1
0.5
0.01
0.1 0.4 0.7 1
0 -50 0 50 100 150
-V SD , Source-to-Drain Voltage (V)
T j , Junction Temperature ( C )
o
Fig 5. Forward Characteristic of
Reverse Diode
Fig 6. Gate Threshold Voltage v.s. Junction Temperature
AP4501GSD
P-Channel
f=1.0MHz
12 1000
-VGS , Gate to Source Voltage (V)
10
I D =-5.0A V DS =-24V
C iss
8
C (pF)
C oss C rss
100
6
4
2
0 0 4 8 12 16
10
1 5 9 13 17 21 25 29
Q G , Total Gate Charge (nC)
-V DS , Drain-to-Source Voltage (V)
Fig 7. Gate Charge Characteristics
Fig 8. Typical Capacitance Characteristics
100
1
Duty Factor = 0.5
100us
10
Normalized Thermal Response (Rthja)
0.2
1ms -ID (A) 10ms
1
0.1
0.1
0.05
0.02
100ms 1s 10s DC
0.01
0.01
PDM
Single Pulse
t T
Duty Factor = t/T Peak Tj = PDM x Rthja + Ta Rthja=90oC/W
0.1
T A =25 C Single Pulse
0.01 0.1 1 10
o
0.001 100 0.0001 0.001 0.01 0.1 1 10 100 1000
-V DS , Drain-to-Source Voltage (V)
t , Pulse Width (s)
Fig 9. Gate Charge Characteristics
Fig 10. Typical Capacitance Characteristics
VDS 90%
VG QG -4.5V QGS QGD
10% VGS td(on) tr td(off)tf Charge Q
Fig 11. Switching Time Waveform
Fig 12. Gate Charge Waveform


▲Up To Search▲   

 
Price & Availability of AP4501GSD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X